
1

Defense Strategies Toward Model Poisoning
Attacks in Federated Learning: A Survey

Zhilin Wang, Qiao Kang, Xinyi Zhang, Qin Hu∗

Abstract—Advances in distributed machine learning can
empower future communications and networking. The
emergence of federated learning (FL) has provided an effi-
cient framework for distributed machine learning, which,
however, still faces many security challenges. Among them,
model poisoning attacks have a significant impact on the
security and performance of FL. Given that there have
been many studies focusing on defending against model
poisoning attacks, it is necessary to survey the existing
work and provide insights to inspire future research. In
this paper, we first classify defense mechanisms for model
poisoning attacks into two categories: evaluation methods
for local model updates and aggregation methods for
the global model. Then, we analyze some of the existing
defense strategies in detail. We also discuss some potential
challenges and future research directions. To the best of
our knowledge, we are the first to survey defense methods
for model poisoning attacks in FL.

Index Terms—Federated learning, security, model poi-
soning attacks, defense

I. INTRODUCTION

The rapid development of artificial intelligence (AI)
has greatly changed society. Given that a large amount
of data can be generated in our daily life, how to
effectively and efficiently use the data to train machine
learning models has become a challenge that needs to
be addressed. Traditional machine learning frameworks
require servers to collect data and perform training tasks
in a centralized way, which causes many problems and
hinders the development of AI: 1) it’s expensive to
collect enough data; 2) performing machine learning on
servers consumes a lot of resources, such as computation,
communication, and storage resources; 3) transferring
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original data from end devices to servers can lead to
data privacy leakage.

The emergence of federated learning (FL) has pro-
vided a promising solution to tackle the above problems.
Google proposed the concept of FL in 2016, which is
a distributed machine learning framework [1], [2]. The
basic idea of FL is that multiple end devices, i.e., clients,
collaboratively train a machine learning model. Unlike
traditional machine learning frameworks, FL does not
require clients to transmit raw data to a central server, but
only the updates of the trained local models, thus protect-
ing the data privacy of clients. FL is suitable for large-
scale machine learning tasks because it distributes the
training task to a large number of end devices, while the
central server is only responsible for model aggregation,
thus reducing the computational pressure on the server.
Currently, FL has been applied in various fields, such as
healthcare [3], transportation [4], communications [5],
and Internet of the Things (IoT) [6]. In particular, FL
has been used to support the development of 5G and 6G,
which can enable more secure and efficient schemes for
future communications and networking.

However, FL has also encountered several challenges.
Among them, security is one of the most important
concerns for researchers. Although FL does not require
clients to upload raw data to protect data privacy, due to
the distributed nature of FL, there is no guarantee that all
devices involved in training are honest, which means that
they may upload malicious submissions. In addition, end
devices can be vulnerable to external attacks, leading to
erroneous local model updates. There are many attacks
on FL, such as poisoning attacks [7], [8], backdoor
attacks [9], [10], and inference attacks [11], [12]. Poi-
soning attacks are divided into data poisoning attacks
and model poisoning attacks, which are both untargeted
attacks. In other words, the aim is to make the model
performance degraded generally instead of achieving
some targeted misclassification. Data poisoning attacks
manipulate the raw data on the clients [13], while model
poisoning attacks manipulate local model updates [14].
Some studies have shown that model poisoning attacks
are more likely to cause damages to FL than data
poisoning attacks [15].
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Though lots of existing surveys focus on analyzing
the security problems faced by FL, little attention has
been paid to defense methods. For example, the work
in [16]–[18] details the possible security problems of
FL, but there is less analysis on how to defend against
model poisoning attacks. Considering about the severity
of model poisoning attacks to FL, it is necessary to
survey its defense mechanisms so as to attract more
attention and inspire future research.

In our survey, we first introduce the relevant back-
ground knowledge about FL and model poisoning at-
tacks, then we classify and detail the existing defense
methods, and finally, we discuss the challenges and
future research directions. To the best of our knowledge,
this is the first survey on the defense mechanisms of
model poisoning attacks. Our main contributions are as
follows.
• We investigate the existing defense methods for

model poisoning attacks in FL and classify them
into two categories: evaluation methods for local
model updates and aggregation methods of the
global model.

• We describe some of the defense methods in detail,
analyzing their workflows and application scenarios.

• We summarize the challenges of defense methods
against model poisoning attacks and discuss future
research directions.

The remainder of this paper is organized as follows.
We introduce the background knowledge of FL and
model poisoning attacks in Section II. The detailed
analysis of defense strategies toward model poisoning
attacks in FL is described in Section III. In Section IV,
we discuss the challenges and some promising future
research directions. In the end, we conclude the whole
paper in Section V.

II. BACKGROUND KNOWLEDGE

In this section, we illustrate the background of FL and
model poisoning attacks.

A. Federated Learning

We consider a conventional FL framework, which
consists of a central server and numerous local devices
termed clients. We let i ∈ {1, 2, 3, · · · , N} represent an
individual client, where N is the total number of clients.
Each client has a different size of local data set, which
can be denoted as Di. At the beginning of each round,
the server first selects a certain number of clients to
participate in the federated learning, and we use mk

to represent the fraction of clients chosen in round k,
where k ∈ {1, 2, 3, · · · ,K} and K is the total number of

training rounds for a specific FL task. Once the clients
are selected, the server sends the initial global model,
denoted as w0, to those clients. Then clients start to train
local models using their own raw data based on w0, and
send the trained local model updates wki to the central
server, where wki is the updates submitted by client i in
round k. Next, the central server collects the local model
updates and runs an aggregation algorithm to update the
global model. This process will be terminated once the
loss of the global model is converged. The most popular
aggregation algorithm is federated averaging (FedAvg)

[1], [19], and it can be expressed as δk =

∑N

i=1
Diδki∑N

i=1
Di

,

where δk is the final weight differences of all clients
and δki is the weight difference of each client in round
k, and δki can be calculated by δki = wki − w

k−1
i .

B. Model Poisoning Attacks

FL is a distributed learning framework that requires
multiple devices to participate, but there is no guarantee
that the selected devices will work honestly. In other
words, the clients in FL are not trustworthy for the
central server. This can lead to many potential security
problems, such as poisoning attacks, backdoor attacks,
and inference attacks. In this paper, we focus on the
model poisoning attack, which is one of the most popular
attacks against FL.

Client 1

Client 2

Client -1

Client 

Central
Server

Attackers

Fig. 1: The topology of model poisoning attacks in FL.

Model poisoning attacks can be initiated by malicious
clients or by an external attacker who controls some
clients. In this paper, we do not distinguish the attack ini-
tiators and uniformly refer to them as malicious clients.
The topology of model poisoning attacks in FL is shown
in Fig. 1. Specifically, when the malicious clients finish
training based on the initial global model w0 in round k,
they modify the local model updates δki and then submit
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them to the central server. Since the central server does
not have access to the raw data of the local clients,
and the data on the clients are usually non-independent
and identically distributed (non-IID), it is difficult for
the central server to identify the modified local updates,
which leads to slow convergence or reduced accuracy of
the global model. Generally speaking, model poisoning
is an untargeted attack, where the purpose is not to target
a specific label but the overall performance of the final
model.

Based on the number of malicious clients, we can
classify the model poisoning attack as single malicious
clients-initiated attacks and multiple malicious clients-
initiated attacks. As for the former, its effect is more
obvious when the number of clients is small; while when
the number of participants is large, its impact will be
offset by weights-based algorithms such as FedAvg. The
latter one is more practical in the mobile scenario.

The reasons why it is difficult to detect and defend
against model poisoning attacks are as below:
• The data of local clients are non-IID, which leads

to significant differences among the obtained local
model updates, causing difficulties for detection.

• The central server cannot obtain the raw data of
local clients, and therefore cannot use these data
for verification.

• The current popular model aggregation method (i.e.,
FedAvg) relies on the data volume of clients to
assign certain weights to the updates submitted by
clients, which does not have any special treatment
for the contaminated updates, and thus it cannot
defend against model poisoning attacks.

III. DEFENSE STRATEGIES TOWARDS MODEL

POISONING ATTACKS

In this section, we analyze the existing defense strate-
gies toward model poisoning attacks. Although attack
detection and defense are two different phases, we treat
them as the same in this paper since they usually
work together to protect FL. From the existing research,
approaches to defend against model poisoning attacks
can be divided into two categories: one is to identify
malicious submissions by designing evaluation mech-
anisms for local model updates, and the other one is
to design novel and Byzantine fault-tolerant aggregation
algorithms based on mathematical statistics. These two
approaches are usually used jointly.

A. Evaluation Methods for Local Model Updates

Intuitively, the most straightforward way to defend
against model poisoning attacks is to examine the sub-
missions of clients. However, since the central server

does not have the direct access to the raw data of the
end devices, evaluating the model updates submitted by
devices has become a challenge. In this part, we will
discuss some of the existing evaluation methods in detail.

1) Spectral Anomaly Detection Based Method: The
basic idea of spectral anomaly detection is to embed
benign data and malicious data into a low-dimensional
space. In [20], a spectral anomaly detection based evalu-
ation framework for FL is proposed. In this framework,
they first assume that there will be a public dataset
which can be trained to provide the spectral anomaly
detection model. Then, they embed the local model
updates, including benign updates and malicious updates,
into a low-dimensional latent space. In this way, the
essential features of these updates are well maintained,
and the two kinds of updates can be easily distinguished
after removing the noisy and redundant features. After
the detection process, the malicious updates are removed
and only the benign updates are taken into account dur-
ing the global model aggregation process. According to
the experimental results, the spectral anomaly detection
based evaluation method can perform well in eliminating
the abnormal updates and maintaining high accuracy of
the model at the same time.

2) Truth Inference Based Evaluation Method: In [21],
the authors utilize an optimization based truth inference
method to evaluate the reliability of the submitted up-
dates in FL before the aggregation of the global model.
The basic idea of truth inference in FL is minimizing the
weighted deviation from the true aggregated parameters.
First, they calculate the reliability score of each update.
Then, they propose two methods to aggregate the global
model: the first one is using the reliability score as the
weight of each update, and the other one is to remove
updates with low reliability scores. However, this paper
only focuses on IID data, making it not practical for
non-IID cases.

3) Entropy Based Filtering Method: Park et al. [22]
design an entropy-based filtering scheme to detect the
outlier updates. At the beginning, the server collects
some public data, and then calculates the entropy of each
update with the public data. Based on their experimental
observations, they argue that the updates with higher
entropy will lead to lower accuracy during the testing
stage. Thus, they set a threshold for the entropy and filter
out updates with entropy higher than the threshold. They
further illustrate that the entropy-based filtering method
can perform well even when the number of adversaries
is large, overcoming the limitation of attack ratio.

4) Cosine Similarity Based Evaluation Method: Co-
sine similarity is defined by calculating the cosine of the
angle between two vectors to evaluate their similarity.
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Cao et al. [15] utilize cosine similarity to assess the
similarity between each update and the update obtained
by training based on the clean dataset of the server.
They argue that an attacker can manipulate the directions
of updates to achieve the purpose of model poisoning
attack, and the directions of the updates can, to a certain
extent, indicate the honesty of the end devices. They first
let the server collect a small sample size of data (e.g.,
100 samples) as the clean dataset, based on which the
server trains the model. After the calculation of cosine
similarity, there will be a trust score for each update used
as the weight for the global model aggregation.

In [23], the impact of the model poisoning attack is
mitigated according to dividing the updates into different
groups by the cosine similarity between updates submit-
ted by clients. This is a new framework called Clustered
Federated Learning. In [3], a cosine similarity based
evaluation method is applied to detect malicious updates.
The central server keeps the reputation of each partici-
pant by checking the similarity of local model updates
and removes non-contributing or malicious participants.
Different from [15], the schemes in [23] and [3] require
no collected clean dataset, and the cosine similarity is
calculated between two different local model updates.

5) Learned Lessons: Malicious nodes can be effec-
tively identified by evaluating local model updates before
model aggregation, thus reducing the negative impact of
model poisoning attacks on FL. The evaluation methods
mentioned above require examination of the data sub-
mitted by each client, which consumes a long time and
computational resources. In addition, some evaluation
methods require the server to collect a portion of clean
data to be used as a basis for validating model updates
to perform machine learning accordingly, which may
lead to new problems, such as energy consumption and
privacy leakage.

B. Aggregation Methods for the Global Model

The aggregation of the global model is an important
part of FL. Currently, conventional FL uses FedAvg
as the aggregation method, which is unable to identify
malicious submissions and leads to the success of model
poisoning attacks. A number of studies have focused
on designing novel aggregation algorithms to improve
the robustness of FL. Based on the existing research,
the aggregation methods used to defend against model
poisoning attacks can be broadly classified into two
categories: adjusting the weights of local model updates
based on certain criteria and designing aggregation al-
gorithms using statistical methods.

1) Criteria-based Aggregation Methods: The metrics
here refer to some criteria used to evaluate local model
updates (e.g., trust, reliability, similarity), and they are
derived from the examination of the updates. For ex-
ample, in [15], the authors use trust as the weights for
local model updates in the aggregation process, while
in [21], the authors use the reliability of local model
updates as the weights. It should be noted that some
aggregation methods directly discard data that do not
satisfy the criteria, which is also a way of weighting,
i.e., treating the weights as 0.

2) Statistic-based Aggregation Methods: Different
from criteria-based aggregation methods mentioned
above, the statistic-based aggregation method does not
perform verification of local model updates, but only
selects data by statistical methods during the global
model aggregation process.

Trim-mean [24] is to select each parameter of the
model independently, sort and remove the maximum and
minimum values, and calculate the mean value as the
aggregated value of the parameter. Specifically, for each
j-th model parameter, the server ranks the j-th parameter
of m local models, i.e., w1j , w2j , ..., wmj , where wij is
the j-th parameter of the i-th local model, removes the
largest and smallest β of them and calculates the average
of the remaining m−2β parameters as the j-th parameter
of the global model. Assuming that at most c clients are
corrupted. This pruned average aggregation rule achieves
a sequentially optimal error rate of Õ( c

m
√
n
+ 1√

mn
) when

c ≤ β < m
2 and the objective function to be minimized

is strongly convex, where n is the number of training
data points on the clients (with the assumption that each
client has the same number of training data samples).

Median [24] is another aggregation method which
selects the median value independently among the pa-
rameters as the aggregated global model. In this Median
aggregation rule, for each j-th model parameter, the
server ranks the j-th parameter of m local models and
takes the median as the j-th parameter of the global
model. Like the Trim-mean aggregation rule, the Median
aggregation rule achieves the sequentially optimal error
rate when the objective function is strongly convex.

Krum [25] selects a local model among m local
models, which is the closest to the others, as the global
model. The advantage is that even if the selected model
comes from a malicious attacker, its impact may be
limited because it is similar to other local models that
may come from benign clients. Assume that at most
c clients are compromised. For each local model wi,
the server computes the sum of the distances between
m−c−2 local models with the closest Euclidean distance
to wi. Krum selects the local model with the smallest
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sum of distances as the global model. When c < m−2
2 ,

Krum has theoretical guarantees for convergence of
certain objective functions.

Bulyan [26] is a Byzantine fault-tolerant algorithm,
which continuously cycles through the updates and then
performs a Trim-mean. And in particular, the algorithm
uses Krum for selection. Thus Bulyan is a combi-
nation of Krum and Trim-mean. Specifically, Bulyan
first iteratively uses Krum to select δ (δ ≤ m − 2c)
local models. Then, Bulyan uses pruning averaging to
aggregate δ local models. In particular, for each j-th
model parameter, Bulyan ranks the j-th parameter of
δ local models, finds γ (γ ≤ δ − 2c) parameters that
are closest to the median and calculates its mean as the
j-th parameter of the global model. When c ≤ m−3

4 ,
Bulyan has theoretical guarantees for convergence of
certain objective functions.

3) Learned Lessons: Existing aggregation methods,
such as Trim-mean and Median, do not guarantee fidelity
and robustness well [15]. In addition, Krum and Bulyan
do not satisfy the efficiency goal because they require the
server to compute the pairwise distances of local model
updates for clients, which is computationally expensive
when the number of clients is large. Bulyan is not
scalable because it performs Krum multiple times in
each iteration to calculate the pairwise distances between
local models. Since the Euclidean distance between two
local models may be influenced by individual model
parameters, Krum may be affected by some anomalous
model parameters [26].

IV. CHALLENGES AND FUTURE DIRECTIONS

Although there are many ways to defend against
model poisoning attacks, many problems still exist and
need to be solved. Also, the existing methods are not
effectively against all model poisoning attacks. For in-
stance, the attack strategy against a robust FL proposed
in [15] can pose a threat to most existing defense
methods. We consider that a good defense mechanism
should meet three requirements: 1) requires effective
resistance to attacks; 2) resource conservation; and 3)
ensuring data privacy. In this section, we will discuss
potential challenges and future research directions for
defending against model poisoning attacks in FL.

A. Resistance Effectiveness against Model Poisoning At-
tacks

If an attacker makes obvious changes to updates,
such as the appearance of extreme values, then such
an attack is easily detected. However, there are few
existing studies focusing on how to resist well-designed

malicious updates. For example, an attacker can design
an attack based on a generative adversarial network
(GAN) [27], [28] that makes it difficult for modified
updates to be detected by the server. In addition, an
attacker can control multiple devices at the same time, or
multiple malicious devices conspire to launch an attack.
In this case, the contamination of local model updates
can be adjusted according to the aggregation method of
the global model.

In the future research, we need to be aware of well-
designed model poisoning attacks. On the one hand, we
will only study against general types of attacks, i.e.,
attacks that are stochastic and synchronous. On the other
hand, we need to study the impact of different attack
strategies, such as the number of malicious clients, the
number of rounds and the time to launch the attack, on
the effectiveness of the attack, so that we can design
effective defense mechanisms.

B. Computational Consumption of the Central Server

The deployment of defense mechanisms in FL requires
a certain amount of computational resources, which
should not exceed the capacity of the central server. The
existing defense mechanisms generally fail to explicitly
consider the limitation of computational resources. For
example, some verification mechanisms verify all the
updates, which will not only consume energy but also
result in time delay, thus affecting the whole FL training
process. Moreover, we also need to consider the energy
consumption of the server if it is required to collect data
and train the model.

In future research, we need to consider how to reduce
the resource consumption caused by deploying the de-
fense mechanism. For FL with a small number of clients,
the submitted local models can be verified one by one,
but once the number of clients is huge, this can consume
a lot of time and energy. One possible idea is to reduce
resource consumption by designing FL with multiple
servers, spreading the task of verifying updates to those
servers. However, this design introduces new problems,
such as communication cost and privacy leakage. The
combination of blockchain and FL might be another
promising solution [29]–[31]. In [31], a blockchain-
based FL is proposed to defend against malicious attacks.
In this framework, clients upload updates to verifiers,
who will select benign updates by voting, and then the
selected updates will be aggregated and written to blocks
through the blockchain network.

V. CONCLUSION

In this survey, we first investigate the existing defense
methods against model poisoning attacks in FL, and
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then classify these methods into two main categories:
evaluating local model updates and designing global
aggregation model algorithms. We also analyze the chal-
lenges and future research directions regarding the model
poisoning attacks in FL.
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