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cost, according to specific consensus algorithms. As an incen-
tive for their work, the node who finally wins the accounting
right will receive a reward, which usually comes from two
sources, including the blockchain system and the information-
record owners. The first part is generally predefined when the
blockchain system is initially designed, which is relatively sta-
ble. While the second part is determined by the record owners
as a sort of handling fee. As transaction is a representative
type of information record in blockchain, we study its pricing
problem as an example in this paper1 and refer to its owner
as a user. In most prevailing blockchain systems, such as
Bitcoin [6] and Ethereum [7], the transaction fee is optional,
thus making it unpredictable and seemingly trivial. However,
as pointed out in [8]–[10], transaction fees from users have
a significant influence on the system security of blockchain,
which becomes even more prominent in blockchain systems
with decreasing block rewards.

Being aware of this, many researchers analyze specific
relationships between transaction fees and various security
metrics of blockchain systems with the help of game theory
[11]–[14]. Other existing work is devoted to transaction pricing
mechanism design based on auctions [10], [15], [16] from the
perspective of miners’ profit. In contrast, our paper designs
a transaction pricing mechanism from the perspective of
users, providing price suggestions to realize both global and
individual rationality.

However, it is challenging to design such a transaction
pricing mechanism due to the following two reasons. First,
from the perspective of users, the ultimate goal of everyone
is to get his transaction included in a valid block on the main
chain by paying the transaction fee as low as possible. This is
hard to achieve since they have to compete with each other on
price with incomplete information about the offers from other
competitors. Second, from the perspective of the blockchain
system, if malicious competitions among users enforce an
excessive pricing bar or extremely long waiting time, users
who cannot afford it will stop using it, which impedes the
sustainable development of blockchain.

To address the above challenges, we resort to game theory

1Pricing of other sorts of information records can be tackled in a similar
way.

Abstract—Although transaction fees are not obligatory in most 
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I. INTRODUCTION

Since Bitcoin was proposed in 2008 as the first represen-
tative conceptualization of blockchain, the world witnessed a
huge amount of attention being injected into this area from 
both the academia and industry. The most important contribu-
tion of blockchain is that it can achieve distributed trust with-
out any centralized coordination, which further highlights an 
attractive feature of blockchain that all recorded information, 
such as transactions and smart contracts, inside blocks on the
main chain cannot be arbitrarily modified or r epudiated. This 
delicately designed technology achieving distributed security
enables wide applications of blockchain in various directions, 
such as blockchain-based database [1], blockchain-witnessed
trustworthy cloud service [2], blockchain-assisted admission 
control in cognitive radio network [3], and blockchain-driven
internet of things [4], [5].

To maintain the aforementioned attractive feature, a large
number of nodes are involved to reach consensus on who
should append the newly generated block to the main chain 
so as to guarantee the stability and security of the whole
blockchain network, which might incur massive costs for
participated nodes, e.g., computation cost and communication
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to model the coexisted competition and collaboration among
users and take advantage of the concept of correlated equilib-
rium [17] to achieve both individual and global optimum. To
be specific, we consider a platform for price recommendation
with users inputting the sizes and time sensitivities of their
transactions, which can efficiently calculate the optimal pricing
strategies for all users with the best utilities, thus solving the
first challenge. In addition, as the recommended prices are
derived according to the real-time parameters of all transac-
tions, the expenses of users will not increase uncontrollably for
the cumulative impact of malicious bidding, which therefore
overcomes the second challenge.

In summary, our contributions in this paper are as follows.
• We propose a pricing game to sketch the transaction

pricing competition among users in blockchain, where the
possibility of each transaction being included is defined
to help depict the individual utility of each user.

• To achieve individual rationality with the maximized util-
ity, we leverage correlated equilibrium to integrate it to
the global optimal objective for securing the interests of
all users, which comes into an optimization problem with
exponential complexity in the number of transactions.

• To overcome the weakness on computational cost, we
propose an approximate algorithm with divided optimum
achieved parallelly for speeding up the calculation pro-
cess, which is numerically evaluated to demonstrate its
effectiveness and efficiency.

The rest of this paper is organized as follows. We investigate
the most related work on blockchain transaction pricing in
Section II. In Section III, we formulate the problem of trans-
action fee determination as a pricing game, where all users
hope to maximize their individual utility. To achieve the goal,
we take advantage of the correlated equilibrium to analyze the
pricing game from a global perspective in Section IV, which
is summarized as an optimization problem and approximately
solved with higher efficiency in Section V. We evaluate our
proposed solution in Section VI and conclude the whole paper
in Section VII.

II. RELATED WORK

Although paying transaction fees is not mandatory in
most existing blockchian systems, a large number of studies
have indicated that it plays a major role in the security of
blockchain. In [8], a financial reasoning was conducted to
demonstrate the unsustainability of blockchain with zero or
infinitesimal transaction fees. Further, as a counterintuitive
conclusion, Carlsten et al. [9] proved that whether rewards
of miners are coming from blockchain system or transaction
fees significantly affects the system security since there exists
nearly no equilibrium with favorable security properties.

Besides, game theory is widely adopted to analyze the
impact of transaction fees on blockchain. Correlating the issue
with simple static partial equilibrium, Houy [11] analyzed
that it is equivalent to keep a fixed transaction fee or let
the decentralized market to determine the unit price with a
fixed block size. Focusing on the owner-less characteristic

of blockchain, Huberman et al. [12] provided closed form
formulas on the relationship between the transaction fees and
waiting times through formulating user behavior as a queuing
game. Similarly, a queuing game with non-preemptive priority
was employed in [13] to depict the dynamics in memory pool
of blockchain with transactions flowing in and out, where five
types of Nash equilibrium were found. In [14], Easley et al.
constructed a game-theoretic model to analyze the evolution
of transaction fees in Bitcoin from a market perspective.

With knowing the importance of transaction fees, more
research work has been conducted to design various pricing
schemes in recent. Most of the existing pricing mechanisms
take advantage of auction to find the optimal price setting
strategy, with a focus on maximizing the profit of miners. In
[10], Lavi et al. figured out two challenges in Bitcoin related to
the decreasing block reward and limited block size, based on
which they analyzed the applicability of monopolistic auction
in this scenario due to its immunity to untrusted auctioneers.
In particular, all transactions included in a block pay the same
lowest bid instead of the current pay-your-bid approach in
Bitcoin, which can decouple the above two challenges. As
a theoretical supplement to the monopolistic auction mech-
anism in [10], Yao [15] proved its approximate incentive-
compatibility and further demonstrated its dominance com-
pared to a traditional auction mechanism named Random
Sampling Optimal Price auction (RSOP) [18]. Besides, Basu
et al. [16] proposed a novel transaction pricing mechanism
based on the generalized second price auction, which was
demonstrated to be resistant to arbitrary manipulation as the
derived bidding satisfied truthfulness.

In summary, the existing work related to transaction fees
in blockchain have revealed its importance, most of which
utilized game theory to conduct analysis; other closely related
work on pricing mechanism design mainly relies on auctions,
aiming at improving the efficiency and profit of miners. In
contrast, our work leverages game theory to model the compet-
itive and collaborative relationships among users considering
the size and time sensitivity of each transaction, which can
result in both global and individual optimum, thus maintaining
a more sustainable and lively blockchain ecosystem.

III. PROBLEM FORMULATION

In this paper, we consider the mempool of a blockchain
system with all transactions from users, where the miners will
select a set of transactions to be included in their individual
block. Since there will be only one valid block at the end
of each round of mining, we focus on the selection of
transactions in this single block from a global perspective2.
As the blockchain network prevails, increasingly large amount
of transactions are generated, streaming into the mempool to
be included in the valid block. However, the size of a block
is limited, yielding the competition among transactions with
respected to the transaction fees.

2Transactions included in different blocks owned by different miners might
be heterogeneous due to the network transmission delay, which will be
considered in our future work.



To describe this competitive system, we denote all transac-
tions in the current mempool as {tx1, tx2, · · · , txn}, where n
is the total number of transactions from users. Each transaction
has a specific size as si, which is fixed once the transaction
is appearing in the mempool. The total size of all transactions
included in one block cannot exceed the maximum limita-
tion. Considering that transactions can have different time
sensitivity, we assume that each transaction txi come with
a time tag Ti indicating its remaining time to be included in a
valid block; otherwise, the user launching this transaction will
suffer from a big loss. In our paper, we aim to study how to
design a pricing mechanism to provide unit price suggestions
for all transactions in the current mempool considering both
competitive prices provided by other transactions and their
various emergency levels (i.e., time sensitivity).

Given a unit price vi for txi with size si, the miner will get
the payment of visi for including txi in the valid block. In
particular, we characterize the miner’s behavior of including
transactions in the valid block with a probabilistic model
which is inspired by the Discrete Choice Model presented in
[19]. Formally, we define the transaction inclusion probability
as follows.

Definition III.1 (Transaction Inclusion Probability). With the
unit price vector from all transactions in the current mempool,
denoted as v, the probability of txi with unit price vi being
included in the valid block is

pi(v) =
exp(aivi − b)∑n
j=1 exp(ajvj − b)

, (1)

where ai > 0 and b > 0 are parameters related to each txi
and the block, respectively.

The above definition based on discrete choice model can
macroscopically describe the transaction inclusion event from
both the perspectives of the miner (block) and the user (trans-
action). Generally, the probability of a transaction txi being
included is positively proportional to its provided unit price
vi. In practical, the miner would be more willing to include
those transactions with higher unit price as they can bring
more profit for a length-limited block; and the transactions
eager to be included are inclined to come with higher unit
price to attract the miner’s attention.

In addition, ai and b in (1) can reflect the randomness
during the process of including transactions in a block, which
may come from both the transaction side and the block
side. For example, since the size of the block is limited, the
miner cannot always select the remaining highest unit price
provider in the current mempool especially when the size of
the block left cannot cover the length of this transaction with
the highest unit price, which can be captured by the parameter
ai dependent on txi at this point, denoted by ai = ψ(si);
similarly, other factors of the block, such as the generation
location, can also impact the transaction inclusion results.

It is worth mentioning that the values of ai and b could be
obtained by querying the transaction and statistically calculat-
ing the historical block information.

With the definition of inclusion probability, we can calculate
the payoff of the user, which is defined as individual utility in
the following.

Definition III.2 (Individual Utility). The expected individual
utility of a user publishing txi with size si and unit price pi
can be calculated by

Ui(v) = pi(v)
(
φ(Ti)− visi

)
, (2)

where Ti is the time tag of txi and φ(·) is a non-decreasing
function with Ti. In particular, φ(·) can be defined as

φ(Ti) =
αi

1 + exp(−βiTi)
, (3)

where αi, βi > 0 are scalars for txi.

In (2), the individual utility of a user is mainly dependent on
two parts, i.e., the profit of the transaction being successfully
included before its deadline and the total cost that the user
needs to pay for the transaction. The cost part is obvious to
be the unit price multiplying the size of the transaction. For
the profit part defined in (3), we consider that, generally, the
sooner the transaction gets included, the higher profit the user
can gain, so the increasing remaining time to be included for a
transaction can bring more profit for this user; while this sort
of advantage of time length left cannot last forever, which is
reflected in the upper limitation of φ(Ti) as αi. In addition,
the increasing speed of φ(Ti) with respect to Ti is unique for
each transaction txi, decided by βi.

Note that since the range of φ(Ti) is [αi

2 , αi], we assume
that αi ≥ 2visi to guarantee the individual utility defined in
(2) is non-negative.

According to the above definition, it can be seen that the
individual utility of each transaction is not only related to its
own posted unit price but also the unit prices provided by other
transactions in the current mempool. In order to depict this
interdependent relationship among all transactions, we take
advantage of the non-cooperation game to further model this
problem as a Pricing Game.

Definition III.3 (Pricing Game). All users with transactions3

in the current mempool form a pricing game where any user
with txi is a game player, exerting the strategy to provide a
unit price vi and getting the payoff of the individual utility
Ui(v).

As the individual utility of any user is collectively de-
cided by all the unit prices, we can specifically express it
as Ui(vi,v−i) where v−i = (v1, · · · , vi−1, vi+1, · · · , vn)
denotes the unit prices provided by other users for their
transactions {tx1, · · · , txi−1, txi+1, · · · , txn}. As a rational
and utility-driven player, any user wants to maximize the
individual utility Ui(vi,v−i). However, it is not feasible for
any user to achieve this goal without knowing the offers
from others. Therefore, in this paper, we start from a global

3Here we consider each user only has one transaction. For a user with
multiple transactions, we treat each transaction individually, regarding there
is a corresponding user behind each one.



perspective to help all users make the decision on how to
provide reasonable unit prices to their transactions to get them
included in the valid block before the deadline and achieve
maximum payoffs as well.

IV. GAME THEORETIC SOLUTION

In the previous section, we propose the pricing game to
characterize the unit price decision problem of transactions
among all users, which leaves the individual utility maximiza-
tion as a challenge. In this section, we first derive it as a
correlated equilibrium, and then analyze this problem from a
macro perspective to achieve the global optimum for all users,
followed by the final solution.

Without loss of generality, we assume that the strategy space
of users is discrete, denoted by V , and with the size of V .
According to the individual utility maximization requirement
of each user, we can get the correlated equilibrium of the
pricing game as follows.

Definition IV.1 (Correlated Equilibrium). For our proposed
pricing game, there exists a correlated equilibrium F (v),
which is a unique probability distribution over the space Vn
denoting all possible combinations of unit prices provided by
all users, if and only if for any user with the strategy vi ∈ V ,
it satisfies

∑
v−i∈Vn−1

F (vi,v−i)
(
Ui(vi,v−i)− Ui(v′i,v−i)

)
≥ 0, (4)

where v′i ∈ V is any strategy other than vi.

According to the above definition, one can see that under
the correlated equilibrium F (v), any user has no motivation
to deviate from the current strategy vi when others are fixed to
v−i. In other words, any user can thus maximize the individual
utility as long as each user sets vi according to v sampled from
F (v). Since F (v) is a probability distribution, we have the
constraints F (v) ≥ 0 and

∑
v∈Vn F (v) = 1. Combined with

the above inequality (4), it is easy to calculate a correlated
equilibrium through solving a linear programming problem,
which could generate a set of results as multiple correlated
equilibria. In order to find the best one, we introduce the
following global objective of social welfare for the pricing
game.

Definition IV.2 (Social Welfare). For a specific correlated
equilibrium of the pricing game F (v), the social welfare
is defined as the expected total utilities of all users, i.e.,∑

v∈Vn F (v)
∑n
i=1 Ui(v).

Therefore, to derive the best pricing strategy for each user,
we can solve the best correlated equilibrium for the pricing
game from a global perspective, which can be summarized
into the following optimization problem.

max :
∑
v∈Vn

F (v)
n∑
i=1

Ui(v) (5)

s.t. : F (v) ≥ 0, (6)∑
v∈Vn

F (v) = 1, (7)∑
v−i∈Vn−1

F (vi,v−i)
(
Ui(vi,v−i)− Ui(v′i,v−i)

)
≥ 0,

∀vi, v′i ∈ V. (8)

For simplicity, we refer this optimization problem as social
welfare maximization problem as the objective function in
(5) is to maximize the social welfare of the pricing game.
It is worth mentioning that the first two constraints (6) and
(7) are coming from the definition of probability distribution,
and the last constraint (8) is to guarantee the individual
utility maximization presented in Definition IV.1. As men-
tioned above, this optimization problem is exactly a linear
programming problem, where the variable is the probability
distribution over all possible combinations of unit prices, i.e.,
F (v). Thus we can employ existing algorithms to solve it
in an efficient manner, such as dual-simplex and interior-
point, which will cost polynomial time in the numbers of
variables and constraints. However, it is not realistic to directly
adopt the existing algorpaithms to solve our aforementioned
optimization problem because the computational cost in our
case is non-polynomial, which can be demonstrated by the
following Theorem.

Theorem IV.1. Directly using the existing algorithms to solve
the social welfare maximization problem has computational
cost exponentially increasing with the number of transactions
n.

Proof. Given the number of transactions n and the size of
strategy space V , the number of variables in the social welfare
maximization problem, i.e., F (v),v ∈ Vn, is V n since the
probability distribution is over all possible combinations of
unit prices. For the number of constraints, it is clear that (7)
is a single constraint, while constraint (6) is held for every
variable F (v), so its total number is also V n; and the number
of constraints according to (8) is nV . Therefore, both the
numbers of variables and constraints are O(V n).

In this case, even though the computational cost of the exist-
ing algorithms for solving the linear programming problem is
polynomial time in the numbers of variables and constraints,
directly applying them on our social welfare maximization
problem will lead to exponential computational complexity in
the number of transactions because the numbers of variables
and constraints are exponentially increasing with n as men-
tioned above.

As shown in the above Theorem, as the increase of the
number of transactions n, the number of variables will increase
significantly, offsetting the efficiency of employing existing
algorithms with polynomial computational complexity. To



overcome this challenge, we propose an approximate algo-
rithm to maximize the social welfare of the pricing game
based on the existing linear programming algorithms, which
is introduced in the following section.

V. AN APPROXIMATE ALGORITHM

To decrease the computational cost of directly employ-
ing classical linear programming algorithms for solving our
problem, we need to eliminate the impact of exponential
relationship between the numbers of variables and constraints
and the number of transactions. In this section, we achieve
this goal through proposing an approximate algorithm which
controls the exponentially increasing numbers of variables and
constraints to an acceptable level.

In general, our main idea is to divide all the current trans-
actions into small sets where the social welfare is maximized
locally in a smaller pricing game to approximate the global
optimization objective. Considering that transactions coming
with the same time tag will compete with each other more
severely as they have the same remaining time to be included
in the valid block, we divide all transactions in the current
mempool into τ sets, where τ is the number of different
time tags of transactions. By this means, the original social
welfare maximization problem in (5)-(8) can be divided into
τ sub-problems achieving local social welfare maximization
for transactions with the same time tag, where the number of
transactions in each sub-problem is defined as nt depending
on the time tag. Formally, we can express the t-th sub-problem
as follows,

max :
∑

vt∈Vnt

Ft(vt)

nt∑
i=1

Ut,i(vt) (9)

s.t. : Ft(vt) ≥ 0, (10)∑
vt∈Vnt

Ft(vt) = 1, (11)

∑
vt,−i∈Vnt−1

Ft(vt,i,vt,−i)
(
Ut,i(vt,i,vt,−i)

−Ut,i(v′t,i,vt,−i)
)
≥ 0,∀vt,i, v′t,i ∈ V, (12)

where vt is the unit price vector of nt transactions; Ft(vt)
is a correlated equilibrium of the small pricing game among
them; Ut,i and vt,i are respectively the utility and unit price of
the i-th transaction while vt,−i is the unit price vector except
vt,i.

Obviously, the above sub-problem has the same components
as the original one, which will output the best correlated
equilibrium Ft(vt) for maximizing the local social welfare
in each small set of transactions. Thus, after solving all sub-
problems with the existing linear programming algorithms,
we can derive an approximate solution through combining
all the solutions of sub-problems, which means F (v) =
(F1(v1), F2(v2), · · · , Fτ (vτ )). By this means, the computa-
tional cost of solving the social welfare maximization problem

come into an acceptable level, which is demonstrated in the
following theorem.

Theorem V.1. Assuming that the number of transactions with
the same time tag has a maximum limitation as n̄, which is
much less than n since the time tags of transactions could
be much diverse; and that the number of different time tags
τ is polynomially increasing with n. Then our proposed ap-
proximate solution can solve the social welfare maximization
problem in polynomial time.

Proof. Using the existing algorithms, we can solve the above
sub-problem with the computational cost of O(V nt) according
to Theorem IV.1. As we assume that nt ≤ n̄ � n, we have
O(V nt) ≤ O(V n̄) where the latter item can be regarded as
constant with respect to n. In addition, since τ increases with
n in a polynomial manner, the overall computational cost
of our proposed approximate solution is τO(V n̄) which is
polynomial in n.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed pricing mech-
anism through simulation experiments. We implement our
experiments using MATLAB R2019a in Windows 10 running
on Intel i7 processor with 16 GB RAM and 512 GB SSD.
For parameters related to transactions, we randomly choose
si ∈ [100, 300] KB and Ti ∈ [10, 30] min. Other parameters
are set as n = 500, αi = 3000, βi = 0.01, ai = si

100 , τ = 200,
and nt ∈ {1, 2, 3} unless otherwise specified. Note that all our
experiments are repeated 20 times to have the average results.

A. Numerical Comparison

In order to demonstrate that our proposed approximate
solution in Section V can bring similar results for the opti-
mization problem in a more efficient manner, we compare the
experimental results returned by traditional solution with the
interior-point method and our proposed one. In detail, we set
the number of transactions n ∈ {5, 6, · · · , 16} and run both
the traditional and approximate algorithms to obtain the com-
putational efficiency and the results of optimization problem,
i.e., maximized social welfare and the unit price vector with
the highest probability as the correlated equilibrium.

As shown in Fig. 1, the computational cost of the traditional
algorithm solving the linear programming problem increases
exponentially with the number of transactions n, while that of
our proposed approximate solution is linearly changing with
n, which is consistent with the analysis results presented in
Theorems IV.1 and V.1. Besides, we present the optimization
results in Tables I and II, where only the results of n = 5
to 8 are reported to avoid redundancy and the results in other
cases have the similar trend. As can be seen from Table I,
even though our proposed approximate solution cannot obtain
the exact same maximized social welfare compared to the
traditional one with the accurate constraints, we can have
approximate values fluctuating around the accurate ones with
lower computational cost in the long run. Since the optimal
correlated equilibrium for social welfare maximization is a






