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Straggler Mitigation and Latency Optimization in
Blockchain-based Hierarchical Federated

Learning
Zhilin Wang, Qin Hu, Minghui Xu, Zehui Xiong

Abstract—Cloud-edge-device hierarchical federated learning (HFL) has been recently proposed to achieve communication-efficient
and privacy-preserving distributed learning. However, there exist several critical challenges, such as the single point of failure and
potential stragglers in both edge servers and local devices. To resolve these issues, we propose a decentralized and straggler-tolerant
blockchain-based HFL (BHFL) framework. Specifically, a Raft-based consortium blockchain is deployed on edge servers to provide a
distributed and trusted computing environment for global model aggregation in BHFL. To mitigate the influence of stragglers on
learning, we propose a novel aggregation method, HieAvg, which utilizes the historical weights of stragglers to estimate the missing
submissions. Furthermore, we optimize the overall latency of BHFL by jointly considering the constraints of global model convergence
and blockchain consensus delay. Theoretical analysis and experimental evaluation show that our proposed BHFL based on HieAvg can
converge in the presence of stragglers, which performs better than the traditional methods even when the loss function is non-convex
and the data on local devices are non-independent and identically distributed (non-IID).

Index Terms—Hierarchical federated learning, blockchain, stragglers, convergence analysis, latency optimization

✦

1 INTRODUCTION

As a representative paradigm of distributed machine learn-
ing, federated learning (FL) significantly reduces the cost of
data transmission and protects data privacy [1]–[3]. In FL,
local devices (i.e., FL clients) upload the trained local models
to the parameter server (i.e., aggregator) for global model
aggregation. However, FL needs multiple rounds of global
model aggregation to obtain the optimal model, which not
only consumes substantial communication resources of local
devices but may cause network congestion and thus long
latency of receiving updates at the server. Therefore, com-
munication efficiency becomes one of the major bottlenecks
of FL.

Hierarchical federated learning (HFL) provides a
promising solution to the above challenge [4]–[7]. The basic
idea is to conduct multiple intermediate aggregations at
proxy servers (e.g., edge servers) before global aggregation
on the central server. Local devices upload the model up-
dates to a closer proxy server for model aggregation, reduc-
ing their communication cost. As demonstrated in [8], HFL
can effectively reduce communication latency. Nevertheless,
HFL still faces many problems. First, HFL requires a central
server for global model aggregation; once this central server
is failed, HFL cannot work anymore. In addition, proxy
servers in the intermediate layer introduce a new attack
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surface, where the privacy leakage of local model updates
and other malicious attacks (e.g., model poisoning attacks)
become severe threats [9], [10].

Blockchain [11], [12], as a distributed ledger technology,
has been widely applied to the fields of distributed machine
learning [13], [14]. Considering that blockchain can establish
a decentralized and trustless computing environment, we
can similarly implement blockchain on proxy servers to take
the place of the central server in HFL so as to reduce the
risks of the single point of failure and malicious attacks.
There exist some studies [15], [16] deploying blockchain in
HFL to protect the privacy and improve efficiency, termed
blockchain-based HFL (BHFL); but they still rely on the
central server to aggregate global models. Furthermore,
applying blockchain on HFL can lead to extra latency during
broadcasting, verification, and consensus to generate a new
block. Although there is some research that optimizes the la-
tency of BHFL by designing resource allocation mechanisms
among devices [17], it still cannot resolve the influence of
blockchain consensus on latency.

Apart from the latency issue, the challenge of strag-
glers still remains unaddressed in BHFL. Here the straggler
refers to any participant, including local devices and proxy
servers, that cannot submit the model updates in time due
to insufficient computing resources or unstable network
conditions. The communication efficiency would be directly
affected by the stragglers, as waiting for updates from all
clients can lead to significant time consumption. Besides, in
the case of permanent stragglers that never rejoin FL, simply
abandoning their updates can lead to poor performance of
the global model, especially when the data of local devices
are non-independent and identically distributed (non-IID)
[18].

The existing studies mitigating the impact of stragglers
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on FL usually utilize the coded computing technology [19]–
[21] or manipulate delayed gradients [22], [23]. The coded
computing method requires extra encoding/decoding pro-
cesses and data transmission, which is not computing or
communication efficient to be applied to various deep learn-
ing models. The scheme of manipulating delayed gradients
can well address stragglers lacking computing power, where
they can still submit partial gradients for model aggregation;
however, this method cannot deal with stragglers caused by
network disconnection or congestion, where the aggregator
cannot obtain any data from stragglers within the required
time. In addition to local devices, proxy servers can also
become stragglers in HFL due to unexpected connection
failures, which cannot be resolved by either of the above
methods since proxy servers are not responsible for model
training. Some research [24] utilizes the historical updates
to predict the missing updates but the estimation bias could
be significant.

To fill these gaps, we propose a fully decentralized BHFL
framework, which is proven to be convergence-guaranteed
even with stragglers existing in local devices and edge
servers. Specifically, we deploy a lightweight Raft-based
consortium blockchain [25] on edge servers to provide a
secure and trusted computing environment for HFL. To
address the challenge of stragglers in BHFL, we design a
novel aggregation algorithm, named hierarchical averaging
(HieAvg), to aggregate model updates submitted from lo-
cal devices and edge servers at the edge aggregation and
global aggregation phases, respectively. The basic idea of
HieAvg is to estimate the missing weights with the dif-
ferences between the historical weights of stragglers, and
HieAvg can work well with non-IID data and non-convex
loss functions. Further, to improve the system efficiency of
BHFL, we optimize the overall latency of BHFL by balancing
the performance of the global model and the time cost of
blockchain consensus.

To the best of our knowledge, this is the first work to
solve the problem of stragglers in BHFL. The proposed
HieAvg is applicable to not only our considered BHFL
framework but also the general HFL scenarios. The main
contributions can be summarized below:

• We propose a decentralized BHFL framework that
can converge even when there are stragglers in both
local devices and edge servers with non-convex loss
function and non-IID data.

• We design HieAvg, a novel model aggregation
method for BHFL, to mitigate the negative impact
of stragglers by utilizing their historical weights to
estimate the missing weights and its convergence is
theoretically proved.

• We optimize the total latency of BHFL by deriving
the optimal number of aggregation rounds on edge
servers under the constraints of blockchain consen-
sus time consumption and global model conver-
gence.

• Rigorous theoretical analysis and extensive experi-
ments are conducted to prove the convergence of
BHFL with HieAvg and evaluate the validity and
efficiency of our proposed schemes.

The rest of this paper is organized as below. We intro-

duce the system model in Section 2. Then, we analyze the
convergence of BHFL with HieAvg in Section 4, and the
latency optimization is shown in Section 5. Next, we conduct
experiments to support our framework and mechanisms in
Section 6. The related work is discussed in Section 7. Finally,
we conclude this work in Section 8. The detailed proofs of
theorems and lemmas are presented in the appendix.

2 BLOCKCHAIN-BASED HIERARCHICAL FEDER-
ATED LEARNING

In this section, we introduce our considered blockchain-
based hierarchical federated learning (BHFL) framework,
consisting of an HFL system and a blockchain system, where
the blockchain is applied to improve efficiency and provide
a trustworthy computing environment for the HFL system.
Specifically, we discuss the overview of BHFL, the detailed
descriptions of the HFL process and blockchain system, and
the challenges of stragglers and latency in this framework.

2.1 System Overview

As shown in Fig. 1, the considered BHFL system com-
prises multiple edge servers and local devices, where a
consortium blockchain runs on edge servers. Specifically,
local devices and edge servers form several FL systems. Let
i ∈ {1, 2, · · · , N} denote the edge server, where N is the
total number of edge servers. For edge server i, there are
Ji local devices connected, and we let j ∈ {1, 2, · · · , Ji}
denote each local device connected with edge server i.
These devices involved in BHFL are heterogeneous, which
means they have various computing and communication
resources, as well as different raw data distributions, i.e.,
non-independent and identically distributed (non-IID) data.
Denote k ∈ {1, 2, · · · ,K} as the edge aggregation round,
i.e., the round of model aggregation on edge servers based
on the local model updates from connected devices, where
K is the total number of edge aggregation rounds; let
t ∈ {1, 2, · · · , T} be the global aggregation round, i.e.,
the round of model aggregation on the blockchain system
based on the submissions from edge servers, where T is
the total number of global aggregation rounds. We use the
pair (t, k) to denote edge aggregation round k in the global
aggregation round t and use (i, j) to denote local device j
connected to edge server i.

1) Updates
Submission

Raft-based Consortium Blockchain

Edge Aggregation LedgerModel Training Global Aggregation

2) Edge
Aggregation

4) Global
Aggregation

3) Blockchain
Consensus

Fig. 1. Blockchain-based Hierarchical Federated Learning.
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The workflow of our proposed BHFL system can be
described below:

1) Updates Submission: after multiple local iterations,
i.e., the gradients updating of Stochastic Gradient
Decent (SGD), local devices submit their trained
local models to the connected edge servers.

2) Edge Aggregation: edge servers aggregate the re-
ceived local models to get the edge models by our
proposed HieAvg which will be detailed in Section
3, and return them to local devices for the next
round of training till finishing K rounds of edge
aggregation.

3) Blockchain Consensus: while local devices are con-
ducting model training using their own data, edge
servers can perform the consensus algorithm in the
upper blockchain network, where one edge leader
will be elected before global aggregation. (see Sec-
tion 2.3 for details).

4) Global Aggregation: after K rounds of edge ag-
gregation, edge servers transmit their latest edge
models to the edge leader for global model aggrega-
tion by HieAvg, and the edge leader will return the
updated global model to edge servers for the next
round of training till the BHFL model converges.

2.2 Hierarchical Federated Learning

In FL, the participants work together to solve a finite-sum
optimization problem with SGD, while in hierarchical FL
(HFL), the hierarchical SGD (H-SGD) is adopted [7]. The
main difference between SGD and H-SGD is that H-SGD
requires several rounds of intermediate aggregation before
global aggregation.

In HFL, we can treat the framework of local devices
and their connected edge server i as FL, and its objective
function can be expressed as:

argmin
wt,k

i ∈Rd

Fi(w
t,k
i ) =

1

Ji

Ji∑
j=1

Fi,j(w
t,k
i,j ),

where Fi,j(·) is the loss function of local device j and Fi(·)
is the loss function of edge server i; and wt,k

i,j is the weights
of local device (i, j) in round (t, k) and wt,k

i is the weights
of edge server i in round (t, k).

On local device (i, j), the model is updated by:

wt,k+1
i,j = wt,k

i,j − ηt,k∇Fi,j(w
t,k
i,j , ξ

t,k
i,j ), (1)

where ηt,k is the learning rate in round (t, k); and
∇Fi,j(w

t,k
i,j , ξ

t,k
i,j ) is the gradient of Fi,j(w

t,k
i,j ) with ξt,ki,j being

the random data sample from the raw data of local device
(i, j), and we can assume Ej [∇Fi,j(w

t,k
i,j )] = ∇Fi(w

t,k
i )

where E(·) is the expectation notation.
On the edge leader, the objective function is defined as:

argmin
wt∈Rd

F (wt) =
1

N

N∑
i=1

Fi(w
t
i),

where F (·) is the global loss function, wt is the global
weights in round t and wt

i is the weights of edge server i
in round t with wt

i = wt,K
i .

As for the gradient of edge server i, we can assume
Ei[∇Fi(w

t
i)] = ∇F (wt). After T rounds of global aggre-

gation, we can get the final global model wT , which should
be as approximate as possible to the optimal global model
w∗ of F (·).

2.3 Raft-based Consortium Blockchain
Generally, there are two ways for synchronizing the model
updates in HFL so that the edge servers and local devices
can get the latest models in the next round, i.e., centralized
and distributed. In the centralized method, a cloud server
is employed to send the latest global model to the edge
servers, such as the client-edge-cloud framework presented
in [8]; while in the distributed way, local model updates
are directly shared among peering edge servers via broad-
casting, and then each server can derive the global model
based on the received updates from others. Though the
distributed method can eliminate the single point of failure,
broadcasting models among edge servers can be costly in
communication resource consumption and latency.

To solve this challenge, blockchain is widely employed to
assist in enhancing the efficiency and performance of HFL.
In general, two essential requirements have to be satisfied.
First, the deployment of blockchain in HFL cannot bring a
significant latency increase to the global model convergence,
including the latency of computing, communication, and
blockchain consensus. Some of the existing studies use
computing-intensive blockchain consensus, such as Proof
of Work (PoW) [26], and require model sharing among
participants before global model aggregation, making the
time cost extremely high [27]. Second, the implemented
blockchain system needs to be capable of protecting data
privacy, i.e., local model updates and global models, from
leakage.

For these considerations, we propose a consortium
blockchain based on the Raft consensus protocol [28]. Since
the consortium blockchain only allows authorized nodes to
be included, the edge servers in this network can thus be
trusted; further, as a leader-based consensus mechanism,
Raft has been proven to be efficient and reliable. The main
working process of the Raft-based consortium blockchain in
BHFL can be summarized into the following three steps:

1) Leader Election: edge servers on the blockchain
conduct the leader election process1, which should
be completed before submitting local models for
global aggregation so that the latency of BHFL can
be reduced compared to the existing work [27].

2) Model Submission: edge servers submit their latest
edge models to the elected edge leader, and then
the leader will aggregate those models to update
the global model.

3) Block Generation: the leader generates a new block
that contains all edge models from edge servers and
the updated global model, and broadcasts this block
to all edge servers on the blockchain.

Here the Raft-based consortium blockchain in the BHFL
system is mainly employed to avoid the single point fail-
ure and provide a trustless intermediary for synchronizing

1. For brevity, we omit the detailed leader election process of Raft,
which can be found in [28].
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model updates among edge servers. It is worth noting that
the edge servers in the blockchain system are required to
finish the leader election process before conducting global
aggregation to reduce latency and communication overhead
due to broadcasting. As for the details of the latency in
blockchain consensus influencing the total system latency,
which has been rarely explored in the existing studies, we
will discuss them in Section 5.

2.4 Challenges of BHFL

As mentioned before, there exist two main challenging
factors in BHFL that impact learning performance, i.e.,
stragglers and latency. We denote Le as the predefined
waiting period of each edge aggregation round and Lg as
the waiting time of each global aggregation round. The
stragglers are BCFL participants that cannot upload models
within the required waiting period in both the layers of local
devices and edge servers. On the one hand, local devices
may not submit model updates to edge servers in time;
on the other hand, edge servers may miss the required
deadline for submitting edge models. These stragglers can
result in long latency for the model training. In addition
to the latency caused by stragglers, the numbers of local
devices, edge servers, edge aggregation rounds, and global
aggregation rounds, as well as the blockchain consensus
process, will influence the total time consumption.

To resolve the challenge brought by stragglers in BHFL,
we first propose a novel model aggregation algorithm,
named HieAvg, to mitigate the impact of stragglers in both
layers of BHFL, which will be elaborated in Section 3.
Further, to deal with the challenge of latency, we design an
optimization scheme detailed in Section 5.

3 HIERARCHICAL AVERAGING AGGREGATION
METHOD

In this section, we elaborate on our proposed hierarchical
averaging (HieAvg) aggregation method. The basic idea
of HieAvg is to use the historical weights of stragglers to
estimate their delayed weights. Generally speaking, there
are two main parts of HieAvg: the first part is the basic
aggregation method when edge servers would like to collect
model submissions from all clients no matter whether there
is any straggler or not; and the second is the straggler
mitigation method with two steps which will be detailed
below.

3.1 Basic Aggregation Methods of HieAvg

In the case that edge servers and the edge leader wait for
weights from all connected devices without dealing with the
stragglers’ impact on BHFL convergence, they may use the
following aggregation methods to update the edge models
and the global model.

3.1.1 Edge Aggregation

Let M t,k
i be the number of devices that can submit weights

to edge server i in round (t, k) within the time requirement,
and let St,k

i denote the number of stragglers among local

devices in round (t, k). Thus, we have Ji = M t,k
i + St,k

i ,
and can get the model of edge server i in round (t, k) as

wt,k
i =

1

Ji

Ji∑
j=1

wt,k
i,j =

1

Ji
(

Mt,k
i∑

m=1

wt,k
i,m +

St,k
i∑

s=1

wt,k
i,s ), (2)

where wt,k
i,m and wt,k

i,s are the in-time and delayed local
weights in round (t, k), respectively.

3.1.2 Global Aggregation
We use the following equation to update the global model
in round t:

wt =
N∑
i=1

Ji∑N
i=1 Ji

wt
i =

Mt∑
m=1

J t
m∑N

i=1 Ji
wt

m +
St∑
s=1

J t
s∑N

i=1 Ji
wt

s,

(3)

where M t is the number of edge servers submitting updates
to the edge leader timely in round t, and St is the number
of stragglers among edge servers in round t; J t

m and J t
s are

the numbers of local devices connected to edge server m
submitting models in time and that of straggler s in round
t, respectively; wt

m and wt
s are the in-time and delayed edge

weights in round t, respectively.
Note that even if there is no straggler, i.e., St,k

i = 0 and
St = 0, the BHFL system can also apply the above equations
to aggregate models.
Remark: Based on the basic aggregation methods of HieAvg,
we can find that it differs from FedAvg [1] in the following
two aspects: i) HieAvg does not require the data size in
edge aggregation, avoiding additional data disclosure of
local devices; and ii) HieAvg uses the ratio of Ji to the
total number of local devices in global aggregation, which
is more suitable for HFL, and FedAvg cannot be applied in
this situation.

3.2 Straggler Mitigation of HieAvg
In this part, we detail the design of HieAvg to mitigate
the stragglers’ impact, including the steps of cold boot and
estimation of delayed weights.

3.2.1 Cold Boot
To better estimate the stragglers’ delayed submissions, the
BHFL system has to collect enough historical data in the
process of cold boot. Denoting Tc as the number of model
submision rounds, we require all participants, including
local devices and edge servers, to finish at least two rounds
of model submission, i.e., Tc ≥ 2, so that the necessary
amount of information can be collected. Ideally, all devices
can submit models in time for the first Tc rounds, and the
step of cold boot can be described in Algorithm 1. The edge
servers need to wait for submissions from local devices for
Tc global aggregation rounds (Line 1). During cold boot, we
use (2) and (3) to aggregate the models on edge servers and
the edge leader, respectively (Lines 2-13).

In the case that one device loses connection after the
first round of model submission while other devices can
continue working, if the device is reconnected and submits
weights after multiple rounds, the resubmitted weights will
be considered as the historical weights.
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Algorithm 1 Cold Boot in HieAvg

Require: Tc, N , K , Ji, ηt,k

Ensure: wTc

1: for t ∈ {1, · · · , Tc} do
2: for i ∈ {1, · · · , N} parallelly do
3: for k ∈ {1, · · · ,K} do
4: for j ∈ {1, · · · , Ji} parallelly do
5: wt,k

i,j ← updated by (1)
6: end for
7: wt,k

i ← updated by (2)
8: end for
9: wt

i ← wt,K
i

10: end for
11: wt ← updated by (3)
12: end for
13: return wTc

3.2.2 Estimation of Delayed Weights
After cold boot, we design the scheme of delayed weight
estimation to mitigate the impact of stragglers by estimating
their delayed weights via the historical weights.

Estimation of Delayed Local Weights: Since the edge
servers have the historical weights of stragglers, we can use
those weights to estimate the delayed weights of stragglers.
We have to ensure that the difference between the estimated
weights and the real delayed weights is as small as possible.
To that aim, we design an approximate method by utilizing
the difference in historical weights of stragglers to estimate
their delayed weights in round (t, k). The estimation of
delayed weights is:

wt,k
i,s = wt,k−1

i,s + Ek[∆
t,k−1
i,s ],

where ∆t,k−1
i,s = wt,k−1

i,s − wt,k−2
i,s , and Ek[∆

t,k−1
i,s ] is the

expectation of ∆t,k−1
i,s used to avoid large estimation bias.

Then, the estimated wt,k
i can be written as:

wt,k
i =

1

Ji

[Mt,k
i∑

m=1

wt,k
i,m +

St,k
i∑

s=1

γt,k
i,s (w

t,k−1
i,s + Ek[∆

t,k−1
i,s ])

]
,

(4)

where γt,k
i,s = γ0λ

k′
is the decay factor used to scale esti-

mated delayed weights with γ0 ∈ (0, 1) being the initial
decay factor, λ ∈ (0, 1) being the scalar, and k′ ≥ 1 being
the missing edge aggregation rounds of stragglers.

Estimation of Delayed Edge Weights: As for stragglers
among edge servers, we use the same estimation method for
dealing with stragglers among local devices. Then, we can
get the estimated wt by the following equation:

wt =
Mt∑
m=1

J t
m∑N

i=1 Ji
wt

m +
St∑
s=1

γt
sJ

t
s∑N

i=1 Ji
(wt−1

s + Et[∆
t−1
s ]),

(5)

where γt
s = γ0λ

t′ is the delay factor with t′ being the miss-
ing global aggregation rounds of stragglers; and ∆t−1

s =
wt−1

s − wt−2
s .

The process of estimating delayed weights in HieAvg
is detailed in Algorithm 2. If there are stragglers, the cor-
responding edge server and the edge leader will use the

estimation method to update the models (Line 4 and Line 9).
Please note that this algorithm is used to handle situations
where there exist stragglers; while if there are no stragglers,
the model updating will be the same as Algorithm 1. Here
we can see that the time complexity of HieAvg, including
Algorithms 1 and 2, is O(T ×N ×K × J).

Algorithm 2 Estimation of Delayed Weights in HieAvg

Require: T , Tc, N , K , Ji, γ0, λ, ηt,k

Ensure: wT

1: for t ∈ {Tc + 1, · · · , T} do
2: for i ∈ {1, · · · , N} parallelly do
3: for k ∈ {1, · · · ,K} do
4: wt,k

i ← updated by (4)
5: wt,k

i ← wt,k
i

6: end for
7: wt

i ← wt,K
i

8: end for
9: wt ← updated by (5)

10: wt ← wt

11: end for
12: return wT

In fact, there exist two types of stragglers for both the
stragglers among local devices and edge servers in BHFL:
permanent stragglers and temporary stragglers. Without loss
of generality, we take the stragglers among edge servers
as an example to clarify this point. First, if the stragglers
will never return to join the BHFL training process due to
the loss of communication connection or location change
at global round t, then we can use the above method
to estimate the updates of stragglers starting from round
t to the end of training. We call this kind of stragglers
permanent stragglers. Second, if the stragglers will return
after t′ ≥ 1 rounds, we can still first use the above method
to estimate the updates of stragglers during rounds t to
t+ t′, and once the stragglers return in round t+ t′+1, they
can submit their latest models. These stragglers are named
temporary stragglers. Intuitively, permanent stragglers are
more harmful to BHFL than temporary stragglers since the
bias will be larger if the stragglers disappear. Thus, we treat
the permanent stragglers as the worst case in the following
section of convergence analysis.

4 CONVERGENCE ANALYSIS OF HIEAVG-BASED
BHFL
In this section, we analyze the convergence of BHFL with
HieAvg. We first introduce the necessary assumptions for
theoretical proof and then discuss the convergence of edge
aggregation and global aggregation subsequently.

4.1 Assumptions
Here we introduce two assumptions that are important
for the proof of convergence. The first one indicates the
property of the loss function employed in our proposed
BHFL framework, which has also been widely included in
the existing studies [7], [17], [29]. The second ensures that
the model updating process will not lead to a significant
bias.
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Assumption 1. (Lipschitz-smoothness) The loss function F (·)
is continuously differentiable and the gradient function of F (·)
is Lipschitz continuous with Lipschitz constant L > 0, which
means ||∇F (w) −∇F (w)||2 ≤ L||w − w||2 for all w,w ∈ R.
It also implies that

F (w)− F (w) ≤ ∇F (w)T (w − w) +
L

2
||w − w||2,

where || · ||2 is the l2 norm.

Assumption 2. (Bounded Variance) Three types of bounded
variance are assumed:

1) Bounded Variance of Weight Difference:

Ek[||(wt,k
i,j − wt,k−1

i,j )−∆i,j ||2] ≤ δ2i,j ,

Et[||(wt
i − wt−1

i )−∆i||2] ≤ δ2i ,

where ∆i,j = Ek[∆
t,k−1
i,j ] and ∆i = Et[∆

t
i]; and δi,j , δi ∈ R+.

2) Bounded Variance of Estimated Gradients:

Ej [||∇Fi,j(w
t,k
i,j )−∇Fi(w

t,k
i )||2] ≤ δ′2,

Ei[||∇Fi(w
t
i)−∇F (wt)||2] ≤ δ′′2,

where ∇Fi(w
t,k
i ) = Ej [∇Fi,j(w

t,k
i,j )] and ∇F (wt) =

Ei[∇Fi(w
t
i)]; and δ′, δ′′ ∈ R+.

3) Bounded Variance of Estimated Delayed Weights:

Ei[||wt,k
i − wt,k||2] ≤ δ

2
,

Et[||wt − w||2] ≤ δ
′2
,

where wt,k = Ei[w
t,k
i ] is the auxiliary variable inspired by [30],

[31]; and w = Et[w
t]; and δ, δ

′ ∈ R+.

Assumption 2.1 is unique in this work since we use the
difference of weights to estimate the delayed weights, which
is assumed to have bounded variance; and Assumptions 2.2
and 2.3 are about the estimated weights, guaranteeing that
the estimation method will not lead to significant bias.

It is worth noting that the learning rate ηt,k =
1

η0+d(tK+k) is assumed to be dynamic, where η0 is the initial
learning rate for all the local devices and d is the decay rate.
Besides, we have no assumption on the convexity of the
loss function; however, since the non-convex case is more
challenging, we will analyze the convergence of HieAvg in
BHFL with the non-convex loss function in the below.

4.2 Convergence of HieAvg

Before we discuss the convergence of HieAvg on both layers,
we need to introduce two useful lemmas which will be
applied in the proof of convergence.

Lemma 1. Under Assumption 2, by applying HieAvg on edge
servers, the difference between the estimated edge model in round
(t, k + 1) and that in round (t, k) is bounded by

wt,k+1
i − wt,k

i ≤ δ − ηt,k∇Fi(w
t,k
i )− γ0

St,k
i

Ji
(∆i,j + δ2i,j),

where St,k
i

Ji
denotes the proportion of stragglers among local

devices connected to edge server i in round (t, k).

Lemma 2. Under Assumption 2, by applying HieAvg on the edge
leader, the difference between the estimated global model in round
t+ 1 and that in round t is bounded by

wt+1 − wt ≤ δ
′ − [

Es[J
t
s]

NEi[Ji]
+ γ0

St

N
(∆i + δ2i )]

− KEs[J
t
s]

NEi[Ji]
ηt,k∇F (wt),

where St

N is the proportion of stragglers among edge servers in
round t.

Both Lemma 1 and Lemma 2 imply that the difference in
estimated weights will be affected by the previous weight
differences, the delayed weights, and the proportion of
stragglers. By now, however, it is still unclear how these
factors influence the convergence of HieAvg based on the
above two lemmas, which will be explored in the following
two subsections.

4.2.1 Convergence on Edge Servers

We first investigate the convergence of HieAvg on edge
servers. By analyzing the convergence on edge servers, we
can see the effectiveness of our proposed HieAvg algorithm.

Theorem 1. Under Assumption 1 and Assumption 2, with
dynamic learning rate ηt,k, the number of stragglers St,k

i , and
the number of connected local devices Ji, if ηt,k > 1

L+2 with

L > 0 and γ0
Ek[S

t,k
i ]

Ji
(∆i,j + δi,j)− δ ≥ 0, by applying Lemma

1, the convergence of HieAvg on edge server i is bounded by

1

K

K∑
k=1

E[||∇Fi(w
t,k
i )||2]

≤
2[Fi(w

0
i )− Fi(w

∗
i ) +

2Ek[η
t,k]δ′2

LEk[ηt,k]+2Ek[ηt,k]−1
]

(LEk[ηt,k] + 2Ek[ηt,k]− 1)
√
K

+
(2 + L)[γ0

Ek[S
t,k
i ]

Ji
(∆i,j + δi,j)− δ]

LEk[ηt,k] + 2Ek[ηt,k]− 1
,

where w0
i is the initial weights of edge server i and w∗

i is the
optimal weights of edge server i.

The above inequality provides a theoretical upper bound
for the averaging expectation of squared gradient norms of
Fi(·), which indicates that the loss function of edge i can
converge to a critical point with enough edge aggregation
rounds, smaller learning rate, and fewer stragglers among
local devices. Besides, Theorem 1 can be employed to ana-
lyze the convergence of traditional FL, which is guaranteed
to converge even with the existence of stragglers if K is well
selected.

4.2.2 Convergence on the Edge Leader

Now, we can discuss the global convergence on the
blockchain.

Theorem 2. Under Assumption 1 and Assumption 2, with
dynamic learning rate ηt,k, the number of stragglers St, and the
number of connected local devices Ji, if ηt,k ≥ 1

L+
2KEt[Jt

s]

NEi[Ji]

with

L > 0 and Et[J
t
s]

NEi[Ji]
+ γ0

Et[S
t]

N (∆i + δ2i ) − δ
′ ≥ 0, by applying
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Lemma 2, the convergence of HieAvg on the edge leader is bounded
by

1

T

T∑
t=1

E[||∇F (wt)||2]

≤
2[F (w0)− F (w∗) +

√
KEt[η

t,k]Et[J
t
s]

NEi[Ji]
δ′′2]

√
T (2
√
K

Et[ηt,k]Et[Jt
s]

NEi[Ji]
+ LEt[ηt,k]− 1)

+
(2 + L)[

Et[J
t
s]

NEi[Ji]
+ γ0

Et[S
t]

N (∆i + δ2i )− δ
′
]

2
√
K

Et[ηt,k]Et[Jt
s]

NEi[Ji]
+ LEt[ηt,k]− 1

,

where w0 is the initial global weights; for convenience, we use Ω to
represent the upper bound at the right side of the above inequality.

Based on the above theorem, we can see that the aver-
aging expectation of squared gradient norms of F (·) has an
upper bound, which implies that BHFL with HieAvg can
converge. Besides, by analyzing Theorem 1 and Theorem
2, we can obtain the following two corollaries to further
explain the convergence performance of HieAvg.

Corollary 1. Given the fixed values of other influence factors, the
convergence performance can be better achieved with more edge
aggregation rounds (K).

Corollary 1 indicates that we can speed up global conver-
gence with more edge aggregation rounds. This is because if
there are more rounds of edge aggregation, each edge server
can get a model with a smaller loss, which accelerates the
convergence of the global model during the phase of global
aggregation.

Corollary 2. Given the fixed values of other influence factors,
the convergence performance can be better achieved with fewer
stragglers in local devices and edge servers (St,k

i and St).

Corollary 2 demonstrates the influence of stragglers on
the convergence of HieAvg. The occurrence of stragglers is
usually caused by unpredictable network conditions, and
it is nearly impossible to eliminate their effects on model
training completely; but with our proposed HieAvg, the
convergence of BHFL is guaranteed.

In summary, the HieAvg algorithm is convergence-
guaranteed with a non-convex loss function and non-IID
data even when there are stragglers among local devices
and edge servers in BHFL.

5 LATENCY OPTIMIZATION OF BHFL
In this section, we target to resolve the challenge of latency
in BHFL by studying the latency optimization of our pro-
posed framework.

5.1 Latency Model
5.1.1 Latency of Local Devices
By applying Shannon’s theory [32], we can calculate the data
transmission rate of local device j connected to edge server

i in round (t, k) as rt,ki,j = Bt,k
i,j log2(1+

ut,k
i,j π

t,k
i,j

ϵ2 ), where Bt,k
i,j

is the bandwidth of local device (i, j) in round (t, k); ut,k
i,j

and πt,k
i,j are the transmission power and channel power

gain, respectively; and ϵ is the Gaussian noise. Then, the

transmission time of one communication round between
the local device j and edge server i can be calculated

by LMt,k
i,j =

Dt,k
i,j

rt,ki,j

, where Dt,k
i,j is the size of local model

updates.
The computing latency before each round of edge aggre-

gation can be computed as LPt,k
i,j =

Ct,k
i,j

ft,k
i,j

, where Ct,k
i,j is the

total CPU cycles required to complete the training in edge
round (t, k) and f t,k

i,j is the unit CPU cycles of local device
(i, j).

Since the communication between the local device j
and edge server i includes both model downloading and
model update submission, the total latency2 on local devices
during one round of edge aggregation is

Llc =
T∑

t=1

N∑
i=1

K∑
k=1

Ji∑
j=1

(2LMt,k
i,j + LPt,k

i,j ).

5.1.2 Latency of Edge Servers
On edge servers, they are mainly responsible for intermedi-
ate model aggregation and transmission. Here we omit the
time consumption of model aggregation since it is negligible
compared to that of model transmission. Similarly to the
calculation of the communication latency of local devices,
we can get the total communication latency of servers as

Lgb = 2
T∑

t=1

N∑
i=1

LMt
i,

where LMt
i is the communication time cost for model

uploading and downloading of edge server i.

5.1.3 Latency of Blockchain Consensus
Let Lbc be the latency of blockchain consensus in each global
round, and denote

Lg = Kmax
t≤Tc

(LMt,k
i,j + LPt,k

i,j ),

as the waiting period for round t. Then Lbc ≤ Lg becomes a
constraint for the Raft-based blockchain system to guarantee
that its deployment brings no increase to the overall latency
of BHFL.

5.1.4 Total Latency
The total latency, denoted as L, is the sum of the latency
of local devices and edge servers. Note that the latency of
blockchain consensus is not included in the total latency be-
cause the blockchain consensus has been completed during
K rounds of edge aggregation as required above. Thus, we
have:

L = Llc + Lgb =
T∑

t=1

N∑
i=1

K∑
k=1

Ji∑
j=1

(2LMt,k
i,j + LPt,k

i,j )

+ 2
T∑

t=1

N∑
i=1

LMt
i.

For a rough qualitative analysis, we assume that the
number of local devices connected to each edge server is

2. This latency can also utilize the value of the slowest device, and
the main solution proposed in this section can be applied similarly.
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the same, which is denoted by J ; and we can assume the
latency of each local device is fixed in each round, and
thus we use LMi,j to represent the communication latency
of local device (i, j); similarly, we use LPi,j and LMi to
stand for the computing latency of local device (i, j) and the
latency of edge server i, respectively. Then, we can simplify
the above equation as

L ≈ TNJK(2E[LM] + E[LP]) + 2TNE[LM′],

where E[LM] = Ei[Ej [LMt,k
i,j ]], E[LP] = Ei[Ej [LPt,k

i,j ]] and
E[LM′] = Ei[LMt

i]. We can see that L and K are positively
proportional, and thus we can conclude that reducing the
frequencies of edge aggregation can lead to lower com-
munication latency. However, we know that larger K will
improve the convergence performance of BHFL according
to Theorem 2. Thus, K should be determined by jointly
considering the performance and latency of BHFL.

5.2 Latency Optimization
In this part, we formulate the latency optimization problem
by reducing latency and maintaining the convergence per-
formance of BHFL at the same time. Based on the above
analysis, we know that L is a linear function of K if we use
the expectations of communication and computing latency
to calculate L, so we can approximately get the optimal K
by solving the following optimization problem:

argmin
K

L

s.t. C1 : Ω ≤ Ω,

C2 : Lbc ≤ Lg,

C3 : K ∈ N+,

where C1 is the constraint of convergence performance,
ensuring that BHFL can have a good performance to meet
the requirement Ω; and C2 constrains the waiting time in
each global round by considering the time consumption of
blockchain consensus; and C3 indicates that K should be a
positive integer. Then the above optimization problem be-
comes a simple integer linear programming with inequality
constraints, which can be resolved using classical solutions
with polynomial complexity, such as CVXPY [33], to find
the optimal number of edge aggregation rounds, i.e., K∗.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed HieAvg algo-
rithm and latency optimization scheme via extensive experi-
ments. We first introduce the experimental settings and then
present the experimental results with discussions.

6.1 Experimental Settings
6.1.1 BHFL Basic Setting
Unless specified otherwise, we use the following basic set-
ting in our experiments. We simulate a BHFL framework
with five edge servers, where each edge server is connected
to five local devices. There are two edge aggregation rounds
between two rounds of global aggregation, i.e., K = 2. Each
local device owns at most one class of data. We assume
there are 20% stragglers in each layer, which means that one

edge server cannot submit the edge model timely in each
round of global aggregation and one local device connected
to each edge server fails to upload the local model timely in
each edge aggregation round, respectively. Besides, we set
γ0 = 0.9 and λ = 0.9 for HieAvg.

6.1.2 Stragglers
For permanent stragglers, they stop submitting model up-
dates after 40 rounds. And temporary stragglers miss sub-
missions in multiple single rounds but will continue to
submit in the next round after the missing round.

6.1.3 Dataset
We use MNIST [34] as the example dataset in BHFL, which
contains 70,000 handwritten digits from 0 to 9. When there
are no stragglers, the accuracy is about 87.75%.

6.1.4 Machines and Platforms
We develop our proposed BHFL framework based on
Python 3.7 and TensorFlow 2.9 on Google Colab, Raspberry
Pi 4 Model B, and AWS EC2. Specifically, we test the conver-
gence of BHFL on Colab with an A100 GPU and explore the
latency of communication for model synchronization with
Raspberry Pi and AWS EC2.

6.1.5 Learning Models
Based on TensorFlow, we create a CNN-based deep learning
model with two convolutional layers, one max pooling
layer, one flattening layer, and one dense layer. The batch
size is 32, the local iteration is one epoch, and the initial
learning rate is 0.001 with the decay rate d = 0.90.

6.1.6 Benchmarks of Aggregation Methods
We consider three benchmarks based on federated aver-
aging (FedAvg) [1] to compare with our proposed BHFL
framework with HieAvg from the convergence perspective.
The first benchmark considers no stragglers, which is named
as W/O Stragglers. For the second solution dealing with
stragglers, only the timely submissions from local devices
and edge servers will be included in edge aggregation
and global aggregation, which is termed as T FedAvg. The
third one uses the weights submitted in the last round as
the weights of stragglers in round k or t, which is called
D FedAvg.

6.1.7 Computing and Communication
We calculate the computing and communication latency
on machines and platforms according to the equations in
Section 5.1. Specifically, we simulate the model training
process of one local device on Raspberry Pi, and we let the
Raspberry Pi communicate with EC2 to get the latency of
communication.

6.2 Experimental Results
6.2.1 Evaluation of Convergence
We first compare the performance of different algorithms
in handling both permanent and temporary stragglers. The
results are shown in Fig. 2. From Fig. 2(a) involving perma-
nent stragglers, we can see that compared to the ideal case,
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i.e., W/O Stragglers, the other three algorithms have various
losses of accuracy. The accuracy of T FedAvg decreases a
lot, and D FedAvg fails to converge, while our proposed
HieAvg can still have relatively good accuracy in handling
permanent stragglers. In Fig. 2(b) dealing with temporary
stragglers, all algorithms can achieve good accuracy, but
the convergence of HieAvg is smoother and faster than
T FedAvg and D FedAvg. These two sets of experiments
illustrate that different kinds of stragglers affect global con-
vergence, but the proposed HieAvg performs better in both
cases.
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Fig. 2. Comparison with Different Aggregation Algorithms.
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Fig. 3. Influences of Parameters on BHFL Training.

Next, we explore the impact of different parameter set-
tings, including the numbers of local devices, edge servers,
edge aggregation rounds, and stragglers in two layers,
on HieAvg with temporary stragglers. By changing J , we
obtain the results shown in Fig. 3(a), which indicates that
HieAvg converges faster when there are fewer local devices.
By adjusting the number of edge servers, as shown in
Fig. 3(b), we can get a similar conclusion. This is because
increasing the number of local devices and edge servers
will aggravate the imbalance of data distribution when the
total data volume of MNIST is fixed under the non-IID
situation, thus leading to performance degradation. Later,
we analyze the influence of K on the accuracy. Fig. 3(c)
implies that more edge aggregation rounds help improve
the accuracy because the more frequent edge aggregation

allows each edge server to better integrate the data char-
acteristics of local devices for local optimization. With the
varying number of stragglers, the results are reported in Fig.
3(d), showing that as the number of stragglers increases, the
model performance decreases. However, even in the case of
40% being stragglers (i.e., Si = 2, Si,j = 2), HieAvg can still
achieve an accuracy of 0.74.

We then investigate the performance of HieAvg with
more heterogeneity involved, including different data dis-
tributions and inconsistent numbers of local devices at
edge servers. For varying data distributions, We adjust the
number of image classes in MNIST that each local device
holds. For example, non IID 1 means that each local device
has at most 1 class of images. The results are presented in
Fig. 4(a), which indicates that when the data distribution
is more unbalanced, the model performance is worse. For
inconsistent numbers of local devices connected to each
edge server, we aim to test the aggregation effectiveness
of HieAvg. The results in Fig. 4(b) show that the BHFL
framework with HieAvg can still achieve better performance
than the benchmark algorithms.
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Fig. 4. Influences of Data Distribution and Local Device Distribution on
BHFL Training.
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Fig. 5. Test Accuracy with Only Local Device Stragglers.

Finally, we test the convergence performance of HieAvg
in mitigating temporary stragglers in only one layer, i.e., the
local devices or edge servers. From Fig. 5(a) and Fig. 6(a),
we can see HieAvg performs better in both cases compared
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Fig. 6. Test Accuracy with Only Edge Server Stragglers.

to other algorithms. Furthermore, by varying the values of
J , N , and K , we can find that smaller J and N , as well
as larger K result in higher accuracy, which is consistent
with the results in Fig. 3. These experimental results indicate
that HieAvg can also efficiently handle only local device
stragglers or only edge server stragglers.

6.2.2 Evaluation of Latency
First, we calculate the computing latency and communica-
tion latency on Raspberry Pi and EC2, and the averaged
results of three Raspberry Pis are shown in Fig. 7(a). We can
see that the more images on a local device, the higher the
latency. This is because the time spent to process more data
samples in the local training process will increase. In our
basic setting, there are five edge servers and five local de-
vices for each server, so each local device has 2,400 images,
and thus, the corresponding latency is around 1.67s. The
size of our employed CNN model updates is about 20KB,
and the averaged transmission time between Raspberry Pi
and EC2 is about 0.51s in the ideal scenario. Inspired by
[8], we can assume that the latency among edge servers
is 0.05s. These parameters are used to solve the latency
optimization problem. The latency of Raft-based blockchain
consensus will directly influence the optimal value of K∗,
and the detailed results are illustrated in Fig. 7(b), which
shows that the longer the consensus latency, the more the
optimal edge aggregation rounds. Thus, we may adjust K
to offset the influence of blockchain consensus latency on
the overall latency.

7 RELATED WORK

Recently, there is an increasing number of studies on HFL.
Lim et al. [5] propose an HFL framework to reduce node
failures and device dropout, and design the resource allo-
cation and incentive mechanisms to improve the learning
efficiency based on game theory. Liu et al. [8] propose a
client-edge-cloud HFL framework running with the Hier-
FAVG aggregation algorithm and demonstrate that commu-
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Fig. 7. Evaluation Results of Latency Optimization.

nication efficiency can be improved by introducing the hier-
archical architecture in FL. Wang et al. [7] provide theoretical
analysis about the convergence of HFL based on Stochastic
Gradient Decent (SGD) and emphasize the importance of
local aggregation before global aggregation. In [6], the focus
is on protecting participants’ privacy in HFL with flexible
and decentralized control.

With the emergence of blockchain technology, re-
searchers propose the blockchain-based federated learning
framework to address the challenges of FL, such as the
single point of failure, incentive, and privacy preservation
[13], [14]. There are also some studies applying blockchain in
HFL. In [15], HFL participants are fragmented into multiple
microchains to guarantee security and privacy for large-
scale IoT intelligence. In [16], blockchain is used to verify
the model updates from edge servers. Nguyen et al. [17]
design a resource allocation mechanism among local devices
to assist the latency optimization of BHFL.

As for the challenges of stragglers, we can classify the re-
lated research into two categories: coded federated learning
(CFL)-based and delayed gradient-based. CFL is proposed
in [19] to speed up FL running the linear regression task,
where the basic idea is that local clients transmit the gen-
erated coded data to the central server at the beginning of
training and the server can compute the coded gradients
to compensate the missing gradients of stragglers. In [20],
CodedFedL is designed to mitigate the impact of stragglers
on FL that executes linear and non-linear regression. Al-
though CFL performs well in tolerating FL stragglers, it
requires extra data transmission and computing, leading
to the risk of data privacy leakage and excessive resource
consumption. Besides, most CFL-based methods are model-
dependent and thus they cannot be generalized to vary-
ing deep learning models. As for the method of delayed
gradient, AD-SGD is proposed to minimize the difference
between the delayed and optimal gradients in [22]. Xu et
al. [23] propose the live gradient compensation method to
utilize the one-step delayed gradients. However, this kind of
method can only deal with the case of stragglers with poor
computing power where their partially-trained gradients
are still available to the aggregator; while if the stragglers
are caused by network connection problems, the server may
not get any model updates from the stragglers in that round.
Recently, a memory enhancement approach, named MIFA,
is proposed in [24] to solve the problem of stragglers by
using stragglers’ recently submitted updates to correct their
missing updates; but this approach can lead to significant
estimation bias since it only relies on the latest updates
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which cannot accurately reflect the overall optimization
trend.

To overcome the above shortcomings in the existing
methods, we propose a novel aggregation method, HieAvg.
It can be easily applied to more common cases of FL with
non-IID data and even non-convex loss functions to solve
the problem of stragglers in a cost-efficient manner.

8 CONCLUSION

In this paper, we propose a decentralized BHFL framework
and design a novel aggregation algorithm HieAvg to ensure
the convergence of BHFL even when there are stragglers in
both local devices and edge servers, where the data is non-
IID and the loss function can be non-convex. We also opti-
mize the overall latency of BHFL by jointly considering the
requirement of global model convergence and blockchain
consensus latency. Theoretical analysis for the convergence
of HieAvg is provided and extensive experiments are con-
ducted to demonstrate the validity and superiority of our
proposed schemes. In the future, we would like to design
incentive and privacy protection mechanisms to further
improve the performance of BHFL.
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